If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2+32t-9=0
a = 16; b = 32; c = -9;
Δ = b2-4ac
Δ = 322-4·16·(-9)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-40}{2*16}=\frac{-72}{32} =-2+1/4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+40}{2*16}=\frac{8}{32} =1/4 $
| x=81+-2x | | x=(0,188-0,0236)/0,1912 | | x+132=140 | | x+99=130 | | (2+6i)/(3-7i)= | | 4y+5=27-2y | | 5m+8m=3m-30 | | (x+20)²=100 | | 3k-6=30 | | 9-11x=0 | | 4x2-16x+10=0 | | 4x²+28x-48=0 | | 7-5(3x-9)=22 | | 6(x-6)-3(2x-9)=-9 | | 5x150=525 | | X^10-1024x+1024=0 | | 0.15x=0.25x-1875 | | 4g+1.6=13.6 | | 5x-3=3x=8 | | 7z-2=5 | | 5s-38=62 | | 50t^2+100t+80=1000 | | 3/4x-11/10=4/3x-12/5 | | 5/3x-1=4/2x | | 3n+3/5=10 | | ^2-36/2x+12=0 | | -1,7(x+2)-0,3x=2(2-x) | | 2/3*y=4/9 | | 1,7(x+2)-0,3x=2(2-x) | | 2x+33=4x+22 | | 0.463x-x=1.38 | | 2/x+x/x=1 |